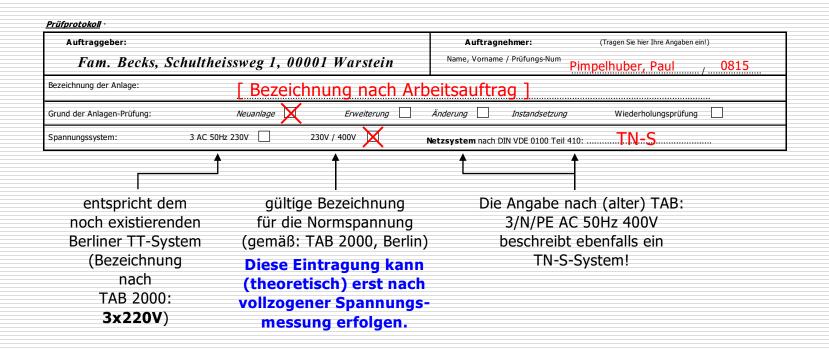
Fachgerechte Reihenfolge der Anlagenprüfung

- Besichtigen
- Erproben
- Messen

Prüfprotokoll

Beispiel:

<u>= 0.0 p. c</u>													
Stromkreis:		Leitungstyp			omschutzein	richtung		Fehlerstro	mschutzscha			Isolationswiderstand	Rechts-
(Bezeichnung)	Leiterzahl	Art	A (mm²)	Art	I _n	$I_K(Z_S)$	In	$I_{\Delta n}$	${ m I}_{\!\scriptscriptstyle \Delta}$	U _B	t₀	1501du0115WIUEI Staffu	drehfeld
Zuleitung bis CEE-Stecker **	5	H07RN-FG 1,5 ***	1,5	gL	16A	0,5 Ω		- :	-	-	-		ja
WS-Steckdose	_	NYM-J	1,5	LS-B	16A		25A	0,03A	\				
Steuer-SK	3/5	NYM-J	1,5	LS-B	10A								
		9	1									4	
								_		1		_//	


Prüfergebnisse systematisch eingetragen

Felder sind dann zu **entwerten**, wenn sie nicht benötigt werden oder Messungen nicht notwendig sind

Anspruch an Prüfprotokoll

- Die Angaben auf dem Prüfprotokoll müssen der realen Anlage entsprechen.
- Eine (andere) Elektrofachkraft muss die Eintragungen im Prüfprotokoll nachvollziehe können. (Missverständnisse darf es nicht geben)
- Der Kunde hat das Recht, Dokumente zu verlangen, die sauber gestaltet sind.

Prüfprotokoll "Kopf"

Prüfprotokoll "Besichtigen/ Erproben"

l	Durchgang gn-ge Adern Aderrarben Nenn- (Bemessungs-) Strom Motorschutzeinrichtung FI (RCD) Abdeckungen	in Ording .*	nicht in Ordng.*	Meldeeinrichtungen Dokumentation Beschriftungen Leiterverbindungen Leitungen Betriebsmittel	in Ordng.*	aicht in Ordng.*	sonstige Prüfungen / Bemerkungen: $ \cdot R_{PE} \equiv 0,02\Omega $ $ \cdot $ $ \cdot $	
F								

Die Feststellung des Durchganges der gn-ge Adern ist erforderlich, weil:

- alle gn-ge Adern Verbindung zum Hauptschutzleiter und demnach dessen Potenzial haben müssen
- sowie Messungen (Z_s, I_∧) durchgeführt werden können.

Werden Betriebsmittel SK II durch solche der SK I ersetzt, muss eine <u>Messung</u> durchgeführt werden.

Grenzwert ergibt sich aus: $R = \frac{1}{\chi \cdot q}$

Prüfprotokoll "Besichtigen/ Erproben"

	in Ordng.*	nicht in Ordng.*		in Ordng.*	nicht in Ordng.*	
Durchgang gn-ge Adern			Meldeeinrichtungen			sonstige Prüfungen / Bemerkungen:
Aderfarben			Dokumentation			•
Nenn- (Bemessungs-) Strom			Beschriftungen			•
Motorschutzeinrichtung			Leiterverbindungen			•
• FI (RCD)			Leitungen			•
Abdeckungen			Betriebsmittel			•

Durch BESICHTIGEN ist z.B. festzustellen, dass:

- gn-ge Adern miteinander verbunden sind
- N-Leiter blau gekennzeichnet ist (siehe DIN VDE 0100 Teil 510, Bbl.1; Juni 2003)
- Leitungen mit ausschließlich schwarzen Adern hinsichtlich ihrer Funktion besonders gekennzeichnet sind (blaue Markierung für N-Leiter)

Prüfprotokoll "Besichtigen/ Erproben"

	in Ordng.*	nicht in Ordng.*		in Ordng.*	nicht in Ording.*	
Durchgang gn-ge Adern			Meldeeinrichtungen			sonstige Prüfungen / Bemerkungen:
Aderfarben			Dokumentation			•
Nenn- (Bemessungs-) Strom			Beschriftungen			•
 Motorschutzeinrichtung 			Leiterverbindungen			•
• FI (RCD)			Leitungen			•
 Abdeckungen 			Betriebsmittel			•

Durch BESICHTIGEN ist z.B. festzustellen, dass:

die Überstromschutzeinrichtungen eines Stromkreises

- unter Beachtung der Selektivität auf das installierte Betriebsmittel mit dem <u>kleinsten</u> Bemessungsstrom abgestimmt sind
- ein RCD gemäß der Anwendung ausgewählt ist (I_{∆n}=30mA)
- Motorschutzrelais einen angemessenen Bemessungstrom haben.

Prüfprotokoll "Besichtigen/ Erproben"

	in Ordng.*	nicht in Ordng.*		in Ordng.*	nicht in Ordng.*	
Durchgang gn-ge Adern			Meldeeinrichtungen			sonstige Prüfungen / Bemerkungen:
Aderfarben			Dokumentation			•
Nenn- (Bemessungs-) Strom			Beschriftungen			•
Motorschutzeinrichtung			Leiterverbindungen			•
• FI (RCD)			Leitungen			•
Abdeckungen			Betriebsmittel			•

Durch BESICHTIGEN ist z.B. festzustellen, dass:

- die Motorschutzeinrichtungen nach Vorschrift angeschlossen ist
- die Motorschutzeinrichtungen auf den notwendigen Bemessungsstrom eingestellt ist
- die Motorschutzeinrichtungen auf die notwendige Funktion (Reset: automatisch, per Hand?) eingestellt ist

Durch ERPROBEN ist z.B. festzustellen, dass:

 z.B. die Meldeeinrichtung anspricht, wenn die Motorschutzeinrichtung auslöst.

Prüfprotokoll "Dokumentation/ Beschriftung"

	in Ordng.*	nicht in Ordng.*		in Ording.*	nicht in Ording.*	
Durchgang gn-ge Adern			Meldeeinrichtungen			sonstige Prüfungen / Bemerkungen:
Aderfarben			 Dokumentation 			•
Nenn- (Bemessungs-) Strom			Beschriftungen			•
Motorschutzeinrichtung			 Leiterverbindungen 			•
• FI (RCD)			Leitungen			•
Abdeckungen			Betriebsmittel			

Durch BESICHTIGEN ist z.B. festzustellen, dass:

- · die Stromlaufpläne vollständig sind und der realen Anlage in
- Funktion und Kontaktbezeichnungen entsprechen
- Beschriftungen (besonders in Verteilungen) korrekt und "kundenfreundlich" sind
- alle wesentlichen Dokumente (Stromlaufpläne, Installationsanweisungen von Betriebsmitteln, Prüfprotokoll) vorhanden, inhaltlich vollständig (besonders Kontaktbezeichnungen), sauber gezeichnet sind und somit "Qualität" haben.

Prüfprotokoll "Messen"

Durchgangsmessung:

Ziel: Durchgang gn-ge Adern feststellen

Vorbereitung: Messleitungsabgleich (kalibrieren)

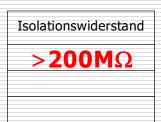
• Isolationswiderstand R_{ISO}:

Ziel: Feststellung von unzulässigen Verbindungen zwischen Leitern z.B. zur Vermeidung von Kurzschlüssen aufgrund von fehlerhafter

- Isolierung
- Verdrahtung

Vorbereitung: Spannungsfreiheit hergestellen; N-, PE-Leiter trennen

- Abdeckungen zum Schutz gegen direktes Berühren beim Messen (DC 500V) montieren
- Betriebsmittel, die durch die Messspannung zerstört werden können entfernen


Durchführung: jeder Leiter gegen jeden (wenn möglich)

Bewertung der Messergebnisse:

Isolationswiderstand R_{ISO}:

- Grenzwert für 230V/400V-Anlagen: $R_{ISO-Grenz} > 0,5M\Omega$
- erwarteter Wert in Neuanlagen: $R_{\rm ISO-erwartrt}$ > 100M Ω Ist der gemessene Werte wenig größer als der Grenzwert, ist von Fehlern auszugehen.

EINTRAGUNG der Messergebnisse ins Prüfprotokoll:

Prüfprotokoll "Messen"

• Impedanz der Fehlerschleife (Schleifenimpedanz) R_S*

Kurzschlussstrom I_K:

Ziel: Feststellung der Wirksamkeit der Schutzmaßnahme

"Schutz durch automatische Abschaltung der Stromversorgung" mit Überstromschutzeinrichtung

Vorbereitung:

- Einschalten der Anlage nach Messung von R_{ISO} (in Energieflussrichtung beginnend mit der größten Überstromschutzeinrichtung)
- geeignete Verbindung der Anlage mit dem Prüfgerät Durchführung:
- Messen der Netzspannung
- Auslösen der Messung des Schleifenwiderstandes / Kurzschlussstromes (Mehrfachmessung)
- Auslösen der Vergleichs-Messung des Netzinnenwiderstandes. (nicht vorgeschrieben aber sinnvoll zum Vergleich, denn $R_i \sim R_s!$ Auch sinnvoll bei Verwendung bei Stromkreisen mit RCD.)

Bewertung der Messergebnisse

• GRENZWERTE:

Überlegung 1

(nach ... Teil 410):

[1997-01]

• GRENZWERTE:

Überlegung 2

(nach ... Teil 610):

[2004-04]

Nach dieser

Vorschrift ist

zu prüfen!

- Abschaltbedingung nach ... Teil 410: t_a Ü 400ms
- Art der Überstromschutzeinrichtung
 zur Bestimmung des notwendigen Abschaltstromes I_a
 z.B.: LS-B16 I_a = 5·I_n = 80A
- Der Strom, der das Abschalten des LS-B 16 bewirkt (Grenzwert), muss mindestens 80A betragen! Daraus folgt mit $R_s = U_0 / I_a$ ein höchstmöglicher Wert des Schleifenwiderstandes von **2,875** Ω .
- Es ist gefordert, dass der tatsächliche Strom $I_{\rm K}$, der im Fehlerfall fließen muss, um den Faktor $\frac{3}{2}$ größer sein muss, als der Strom $I_{\rm a}$.

Es gilt:
$$I_{K} > \frac{3}{2} \cdot I_{a}$$
 z.B. bei LS-B 16: $I_{K} \stackrel{?}{a} \frac{3}{2} \cdot 5 \cdot 16A = 120A$

Es gilt:
$$R_s < \frac{2}{3} \cdot \frac{U_0}{I_a}$$
 z.B. bei LS-B 16: $R_s \ddot{U} = \frac{2}{3} \cdot \frac{230V}{80A} = 1,91\Omega$

Hintergrund der 2/3-Regel: Berücksichtigung von ...

- ... Netzspannungsschwankungen bei den Messungen
- ... veränderlichen Leitertemperaturen während des Betriebs
- ... Messabweichungen / Messfehler

Prüfprotokoll "Messen"

Bewertung der Messergebnisse:

Schlussfolgerung:

- 1. Ist R_s wesentlich größer als 1Ω , ist von einem Fehler auszugehen!!! <u>Ursache</u>: schlechte Klemmstellen, Aderbrüche, Verringerung des Leiterquerschnittes beim Abisolieren von Adern mittels Seitenschneider (üblich in Praxis?)
- 2. Auch wenn der Grenzwert (für R_s nach ...Teil 610) nicht überschritten ist, ist die Anlage bei $R_s > 1\Omega$ häufig nicht in Ordnung!

Beispiel:

Ein Verbraucher zieht einen Strom von 10A. Der Übergangswiderstand an einer Klemme beträgt 1Ω .

Mit P=I²·R wird eine Wärmeleistung von 100W an der Klemmstelle erzeugt. BRANDGEFAHR!!!

Prüfprotokoll "Messen"

EINTRAGUNG der Messergebnisse ins Prüfprotokoll:

I_κ / Z_s
328Α

Es bleibt dem Anlagen-Prüfer überlassen, welcher Messwert:

- Kurzschlussstrom (empfohlen) oder
- -Impedanz der Fehlerschleife eingetragen wird.

Besonderheit:

Bei Verwendung von Motorschutzrelais mit kleinen Nennströmen (z.B. 0,4A) wird sowohl der Wert der Schleifenimpedanz als auch der des Innenwiderstandes erhöht.

(Die dünnen Heizwendel um die Bimetalle erzeugen pro Pfad einen Widerstand von bspsw. 10 Ω . Die Anhebung der Schleifenimpedanz und des Netzinnenwiderstandes auf etwa 30 Ω ist durch dieses Betriebsmittels sehr wahrscheinlich.

Prüfprotokoll "Messen"

Fehlerstromschutzeinrichtung- RCD:

- Abschaltfähigkeit des RCD (nach ... Teil 610 [2004-04]
 Fehlerstrommessung bei gleichzeit. Abschaltung) und wenn das Prüfgerät es zulässt
- die Abschaltzeit
- die Berührungsspannung (notwendig in TT- Systemen

Vorbereitung:

- Einschalten der Anlage nach Messung von R_{ISO} (in Energieflussrichtung beginnend mit der größten Überstromschutzeinrichtung)
- Prüftaste betätigen
- geeignete Verbindung der Anlage mit dem Prüfgerät herstellen

Prüfprotokoll "Messen"

Fehlerstromschutzeinrichtung- RCD:

Durchführung:

- Kontrolle der der Netzspannung durch Messung
- Auslösen der Messung zur Bestimmung
- des Abschaltstromes I_{Δ} [RCD muss abschalten]
- der Abschaltzeit ta
- der Berührungsspannung U_B

Bewertung der Messergebnisse

	GRENZWERTE	erwartete WERTE
Abschaltstrom I _A gefordert nach Teil 610 [2004-04]; nicht messbar mit "NORMA"-PG!	$\mathbf{0,5^{\cdot}I}_{\Delta n} < \mathbf{I}_{\Delta} < \mathbf{I}_{\Delta n}$	$I_{\Delta} \sim 20$ mA (bei $I_{\Delta n} = 30$ mA)
Abschaltszeit t _a nicht gefordert nach Teil 610 [2004-04]	(bei $I_p=5 \cdot I_{\Delta n}$) $t_a < 40ms$ (bei $I_p=I_{\Delta n}$) $t_a < 300ms$	$t_a \sim 30 ms$ (bei Prüfstrom $I_p = 5xI_{\Delta n}$) $t_a \sim 60 ms$ (bei Prüfstrom $I_p = 1xI_{\Delta n}$)
Berührungsspannung U _B nicht gefordert für TN-System nach Teil 610 [2004-04]	U _L < 50V	U _B ~ 0∨

EINSCHÄTZUNG der gesamten Anlage

Da das vom Prüfer unterschriebene Prüfprotokoll

- den Abschluss der Installation darstellt,
- mit dessen Übergabe die Anlage in das Eigentum des Kunden übergeht und somit
- juristischen Charakter hat,
- → muss die Anlage in Ordnung sein;
- →müssen die Angaben auf dem Prüfprotokoll dem tatsächlichen Zustand der elektrischen Anlage entsprechen.

In realen Kundenanlagen ist bei Feststellung eines Fehlers die Prüfung abzubrechen und der Fehler zu beheben. Erst dann kann die Prüfung weiter durchgeführt werden.

EINSCHÄTZUNG der gesamten Anlage

Da das vom Prüfer unterschriebene Prüfprotokoll

- den Abschluss der Installation darstellt,
- mit dessen Übergabe die Anlage in das Eigentum des Kunden übergeht und somit
- juristischen Charakter hat,
- → muss die Anlage in Ordnung sein;
- →müssen die Angaben auf dem Prüfprotokoll dem tatsächlichen Zustand der elektrischen Anlage entsprechen.

In realen Kundenanlagen ist bei Feststellung eines Fehlers die Prüfung abzubrechen und der Fehler zu beheben. Erst dann kann die Prüfung weiter durchgeführt werden.